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A B S T R A C T   

Samples of ZnO/TiO2 bilayer films with various layer thickness were fabricated by atomic layer 
deposition (ALD). The X-ray diffraction (XRD) patterns revealed the absence of sharp peaks and 
confirms the amorphous nature of the samples under study. The absorption spectra of ZnO/TiO2 
for the three samples were obtained in view of incident wavelength range (350–700 nm). The 
absorption spectra were used to determine the optical energy band gap. The experimental results 
show that the direct optical band gap (Eg) grown on glass substrate was obviously affected by the 
increase of the number of ZnO/TiO2 bilayers and found to decrease from (3.45 to 2.96 eV). The 
transition power factor (PF) for the three samples was applied to confirm the direct optical 
transition. A suitable relationship between the linear refractive index (n0) and the optical energy 
band gap (Eg) determined from the experimental and theoretical data was proposed for providing 
good basis for predication the metallization and polarizability criterion and other related pa
rameters, such as optical dielectric constant and electrical susceptibility. The deep analysis of the 
studied properties, based on the variation of the number of the bilayer of ZnO/TiO2, makes the 
incorporation of these two materials promising candidates in various optoelectronic applications 
and solar cell devices.   

1. Introduction 

Transparent conductive oxides (TCOs), exhibit remarkable differences in optical and electrical properties in thin film form when 
compared to their bulk form. Atomic layer deposition (ALD) method is considered as a great deposition technique for producing high 
quality thin films due to its self-limited surface reaction behavior and low level of impurity contamination [1–3]. ALD play a role in 
creating materials with wave guide properties due to the high uniformity of the (ALD) grown films [4,5]. Among all the modern 
applications for electronic devices, the (ALD) became interesting for new applications of oxides such as TiO2, Al2O3, and ZnO in 
different areas including biomaterials, photo catalysis and food packaging [6–9]. The (ALD) has proved to be a reliable technique for 
producing monolayers with well controlled physical and chemical properties [10–12]. Among various TCO materials, ZnO is one of the 
most important multifunctional oxides of wide gap (3.37 eV) and a large excitation binding energy (60 meV) due to its superior optical 
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and electronic properties [13–15]. Recently ZnO based films have received much attention because they have advantages over 
commonly used tin based oxide films [16]. The incorporation of ZnO with TiO2 is of great significance for improving physical and 
optical characteristics [16–18]. In the present work a precise study is paid to probe the effect of the thickness of the bilayers on the 
absorption spectra in terms of the optical energy gap of the ZnO/TiO2 bilayer number grown by ALD technique. The obtained results 
are correlated with the linear refractive index, the metallization and the polarizability criterion. In the present work we focus on the 
effects of the number of ZnO/TiO2 bilayers on the optical energy gap by studying the absorption spectra in detail. The obtained results 
are correlated with the linear refractive index, the metallization and the polarizability criterion. It has been found that the linear 
refractive index, the molar refractive index, the electronic polarizability and the optical dielectric properties are greatly improved by 
the increase of the number of the ZnO/TiO2 bilayers. 

2. Experimental details 

The deposition was done using a Beneq TFS-200-186, flow type ALD system. The ALD cycle of sample S1 [20 nm ZnO / 20 nm TiO2] 
consisted of 115 subcycles of ZnO deposition and 286 subcycles of TiO2 deposition. During the ZnO deposition both precursors (DEZ 
and H2O) were pulsed for 100 ms and was followed by 3 s purge in each case. In case of the deposition of the TiO2 layer the precursors 
(TiCl4 and H2O) were pulsed for 100 and 150 ms respectively and was followed by 3 s purge each. During the deposition of the first ZnO 
layer the NOV and NOP were set to be 300 sccm, while for the TiO2 deposition the NOV and NOP were set to be 250 and 600 sccm 
respectively. In order to let the system to stabilize in between the two deposition stages 10 s wait time were included. The samples were 
deposited at 200 ◦C. The pressure in the reactor (Pr) and in the surrounding chamber (Pch) were 1 and 9 mbar respectively. For S2 [(20 
nm ZnO / 20 nmTiO2)x2]and S3[(20 nm ZnO / 20 nmTiO2)x5] this two-step process were multiplied for 2 and 5 times. The X-Ray 
diffraction (XRD) pattern of ZnO/TiO2 samples were recorded and characterized by using a Shim ADZU diffractometer type XRD 6000. 
The optical absorption was measured using a V-670 Jasco double-beam spectrophotometer, which utilizes a unique, single mono
chromator design covering a wavelength range from 190 to 2700 nm. 

3. Results and discussion 

3.1. X-ray diffraction (XRD) 

The XRD patterns for S1, S2 and S3 are presented in Fig. 1. The obtained pattern is in agreement with the literature at our deposition 
temperature of 200 ◦C and shows no sign of either the anatase or the rutile phase of TiO2 [19]. Considering the ZnO counterpart 
however, there is a slightly visible peak at around 34.4◦, that according to the literature with orientation of (002) of ZnO, that can be 
attributed to either the very small size of the crystallites or the very small amount of them present in the sample [20–22]. 

3.2. Absorption (A) and optical energy gap (Eg) 

Absorption spectroscopy is a powerful technique for exploring optical properties of any materials [23]. Fig. 2 presents the optical 
absorption spectra (A) for the three samples S1, S2 and S3 in the wavelength range of 350–700 nm. The absence of sharp peaks in the 
absorption curves seen in Fig. 2 also confirms the very small size of crystallites that had been seen in the X-ray diffraction patterns 
shown in Fig. 1. 

As observed in Fig. 3. The optical energy gap (Eg) can be derived from the well-known relation [24]. 

αhν = A(hν − Eg)
PF (1)  

Fig. 1. Shows that the XRD pattern for ZnO/TiO2 samples S1, S2 and S3.  
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Where hν, Eg and A denote the photon energy, the optical energy gap and the band tailing parameter. PF in the above equation is the 
power factor of the transition mode; PF = ½ for direct allowed transition, PF = 2 for indirect allowed transition. The value of Eg can be 
estimated from the intercept of the extrapolation of the linear part of the curve to zero absorption with photon energy as seen in Fig. 3. 
The obtained values of Eg for the direct allowed transition of S1, S2 and S3 in comparison with the optical energy gap of pure TiO2 and 
ZnO given in [25] are presented in Table 1. It is observed that the value of the optical energy gap (Eg) decreases with the increase 
bilayer number for S1, S2 and S3. 

This observation implies that the optical gap values are affected by the number of bilayers within the samples. In order to verify the 
ability of the optical transition whether it becomes direct or indirect we used the following equation [26–28]. 

ln(αhν) = lnA + PF ln(hν − Eg) (2) 

The calculated values of the transition power factor (PF) of S1, S2 and S3 determined from the slope in the insets of Fig. 3 are 
tabulated in Table 1. As observed the values of PF for the three samples are close to 0.5, which prove the direct allowed transition as 
mentioned earlier. 

The linear refractive index is a fundamental parameter that play an important role in designing optical devices [29]. 
suggested an equation for calculating the linear refractive index (n0) from the optical energy gap values by using the equation: 

1 −
n2

0 − 1
n2

0 + 2
=

̅̅̅̅̅̅
Eg

20

√

(3) 

Table 1 present the (n0) values for S1, S2 and S3. As observed the optical band gap values for the three samples decrease with the 
increase of the linear refractive index. It is also noticed that the values of optical energy gap and the linear refractive index of pure TiO2 
and ZnO deviates from that of S1, S2 and S3. The values of the linear refractive index and the energy gap of the pure oxides have been 
collected from Ref. [30]. These results indicate that the number of bilayers affects the optical parameters. The above observation can 
be explained on the basis of Duffy empirical relation that relates the energy gap to the molar fraction (Rm) for a large number of oxides 
[31,32]. 

Rm = (
n2

0 − 1
n2

0 + 2
)Vm (4)  

where (Vm) is the molar volume. This equation infers the explicit expression for (Rm) in respect to Eg. Eq. (4) can be written by means of 
Lorentz-Lorentz formula as [33]. 

̅̅̅̅̅̅
Eg

20

√

=

(

1 −
Rm

Vm

)

(5) 

The above equations were used for calculating the metallization criterion of S1, S2 and S3 on the basis of two independent 
quantities: its linear refractive index and energy gap in the form Rm/Vm and 

̅̅̅̅̅̅̅̅̅̅̅̅̅
Eg/20

√
, as seen in Table 1. According to the metallization 

theory proposed by Herzfeld [34], for the condition Rm/Vm = 1, the linear refractive index becomes infinite, which corresponds to the 
metallization of covalent solid materials. Accordingly, the sufficient conditions for producing metallic or nonmetallic solids are 
Rm/Vm≥ 1 (for metal) or Rm/Vm < 1 (for nonmetal). The large value of Rm/Vm means a large increase in the width of valence and 
conduction bands, that causes a narrow band gap. The metallization criterion (M) reflects the metallic or non-metallic nature of the 
material on the basis of its band energy and can be calculated according to the following relation [35]: 

M = 1 −
Rm

Vm
(6) 

The metallization criterion (M) as seen in Table 1 decreases with increasing the number of TiO2/ZnO bilayers. This decrease in
dicates that our samples are becoming more metallic with the increase of the number of bilayer. Any decrease as seen from (0.415 to 

Fig. 2. Shows that the absorption band for TiO2/ZnO samples S1, S2 and S3.  
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0.385) for metallization criterion means a large width in the valence and conduction band, that causes a decrease of the energy gap 
from (3.45 to 2.96 eV). Briefly, a suitable relationship between the linear refractive index no, energy gap Eg and the metallization 
criterion. It has been established that increasing the nonlinear refractive index increases with the increasing linear refractive index and 
decreasing the energy gap of oxides, and this is related to the increasing the oxides metallicity (see Table 1). An increase in Rm/Vm from 
polarizability or metallicity point of view is accompanied by a decrease of the energy band gap. The knowledge of the polarization in 
different amorphous materials is very interesting because of the need to design optical functional materials with high optical per
formance such as oxide glasses. The most familiar equation used for the polarizability approach is the Lorentz – Lorentz equation given 
in Eq. (6). This equation presents the polarizability were the molar fraction (Rm) can be expressed as a function of molar polarizability 
αm by (Rm ¼ 2.52αm) were the polarizability increases with the increase of (Rm). In short the role of polarizability as basic parameter of 
linear refractive index and optical energy gap of our oxides samples has been emphasized, where the relationship showed a linear 

Fig. 3. (αhν2) versus (hν) plot for samples S1, S2 and S3. The insets show the (ln αhν) versus ln(hν-Eg) plots.  
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proportionality between the polarizability and the refractive index, and it indicates clearly the linear dependence of Rm on the 
polarizability. The electronic polarizability can also be calculated from the linear refractive index using the formula reported in [36]. 

αe =
3(n2

0 − 1)
4π NA(n2

0 + 2)
(7)  

where NA is the Avogadro’s number. The investigated parameters revealed that the linear refractive index and the energy gap, which 
are associated with the oxides metallicity and polarizability, have strong correlation with the increase of the bilayer number of ZnO/ 
TiO2. 

3.3. Optical dielectric parameters 

The dielectric parameters depend mainly on the light absorption of the films and strongly depends on the linear refractive index as 
well. The dielectric constants are also related to the energy band gap. In this part we calculated the dielectric constant of S1, S2 and S3 
by using the simple relation, which is a direct result of Maxwell’s equations [37]. 

ε = n2
0 (8) 

The relation between the optical dielectric constant and the linear refractive index given in [38] was used for calculating the optical 
dielectric constant as [39]. 

εopt = ε − 1 (9) 

The calculated values of the dielectric constants and the optical dielectric constants of S1, S2 and S3 as presented in Table 2 in
creases from (5.230–5.793) and (4.230–4.793) respectively. This means that the increase of the number of the bilayers of TiO2/ZnO 
from (1–5) affects the dielectric constants. The increase in the value of the two dielectric constants indicates an increase in the optical 
absorption, that causes a decrease in the optical energy gap as seen in Table1. The linear dielectric susceptibility (χ) indicates the 
ability of a material to become transiently polarized, and it is an important parameter that affects the optical non-linearity of the 
oxides. The (χ) of S1, S2 and S3 can be calculated by using the relation based on the dielectric constant’s values given by [40]. 

χ =
ε − 1

4π (10) 

Table 2 presents the variation values of the electrical susceptibility of S1, S2 and S3. As seen the (χ) value increase from 0.257 to 
0.301 with increasing the number of bilayers for S1, S2 and S3. The investigation revealed the linear dependence of the linear 
refractive index on the dielectric susceptibility. 

4. Conclusion 

The effect of the number of bilayers on the absorption spectra and optical energy gap of the ZnO/TiO2 system with different 
thickness for S1-(20 nm/20 nm), S2-(20 nm/20 nm)x2 and S3-(20 nm/20 nm)x5, respectively, prepared by atomic layer deposition 
(ALD) were investigated. The results demonstrate that the ALD is promising technique to grow thin films with high efficiency and 
remarkable optical properties. The direct optical band gap and the transition power factor were investigated. The optical band gap was 
found to decrease with the increase of the number of bilayers of ZnO/TiO2. A correlation was observed between the linear refractive 
index (n0) and the energy band gap (Eg) in terms of the metallization criterion, polarizability and dielectric properties on the basis of 
experimental and theoretical data. The investigations revealed that the linear refractive index is one of the most important factors 
which are associated with the oxide’s metallization. The change in the number of bilayers of ZnO / TiO2 thin films fundamentally 
affects the metallization criterion and the polarizability. On these bases it is suggested that ZnO/TiO2 bilayer thin films prepared by the 
(ALD) with appropriate thickness makes this technology interesting and quite promising for fabricating materials for nonlinear optics 
applications. 

Table 1 
The direct optical energy gap (Eg), Transition power factor (PF), Linear reflection index (n0), Rm /Vm, Metallization criterion (M) and Electronic 
polarizability (αe) for the studied ZnO/TiO2 films with different thickness prepared by the ALD technique.  

Estimated Parameter Eg (eV) PF no Rm

Vm  

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Eg/20

√ M αe  

Samples        

TiO2 3.00 – 2.554 0.35 0.39 0.65 2.570× 10− 25  

ZnO 3.40 – 2.008 0.50 0.41 0.50 1.994× 10− 25  

S1 3.45 0.5733 2.287 0.585 0.415 0.415 2.324× 10− 25  

S2 3.06 0.60 2.381 0.608 0.391 0.392 2.415× 10− 25  

S3 2.96 0.664 2.407 0.615 0.384 0.385 2.440× 10− 25   
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